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Exercise 1. The weak derivative of f is given by

f ′(x) =
{

1 for all x > 0
− 1 for all x < 0.

Indeed, for all φ ∈ D(I) = C∞
c (I), we have∫ 1

−1
f(x)φ′(x)dx = −

∫ 0

−1
x φ′(x)dx +

∫ 1

0
x φ′(x)dx

= − [x φ(x)]R0 +
∫ 0

−1
φ(x)dx + [x φ(x)]R0 −

∫ 1

0
φ(x)dx

= −
∫ 1

−1
f ′(x)φ(x)dx.

By contradiction, assume that there exists a sequence {fn}n∈N such that fn −→
n→∞

f in W 1,∞. As {fn}n∈N

and {f ′
n}n∈N converge uniformly, we deduce in particular that f ∈ C1(I), which contradicts the fact that

f is not differentiable at x = 0.

Exercise 2. 1. By the co-area formula, if β(d) = H d−1(Sd−1) = 2π
d
2

Γ
(

d
2
) is the area of the (d − 1)-

dimensional sphere Sd−1 ⊂ Rd, we have∫
B(0,R)

|u(x)|pdx = β(d)
∫ R

0
rd−1|f(r)|pdr,

which proves the claim.

2. We have

∇u(x) = x

|x|
f ′(|x|), (1)

which shows that |∇u(x)| = |f ′(|x|)|, and the claim follows from the previous formula, provided
that we show that the expression (1) is the weak derivative of u as a Sobolev function. For all
φ ∈ C∞

c (B(0, R)), we have∫
BR\Bε(0)

u
∂φ

∂xi
dx = −

∫
BR\Bε(0)

φ
∂u

∂xi
dx −

∫
∂B(0,ε)

u φ
xi

|x|
dH d−1.

Assuming that ∫ R

0
rd−1|f ′(r)|pdr < ∞,

we deduce that ∂u

∂xi
∈ Lp(B(0, R)). Furthermore, as u

∂φ

∂xi
∈ L1(B(0, R)), we deduce that

lim
ε→0

∫
BR\Bε(0)

u
∂φ

∂xi
dx =

∫
BR(0)

u
∂φ

∂xi
dx.

Furthermore, we have∣∣∣∣∣
∫

∂B(0,ε)
u φ

xi

|x|
dH d−1

∣∣∣∣∣ ≤ β(d) ∥φ∥L∞(B(0,R)) εd−1f(ε) −→
ε→0

0.
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Now, assuming that u ∈ W 1,p(B(0, R)), then the weak derivative of the restriction of u to B(0, R)
is given by the formula (1). The previous computation shows that ∇u satisfies the same integration
by parts formula as the weak derivative and the fundamental lemma of the calculus of variations
implies that functions that agree almost everywhere in B(0, R) \ {0} agree almost everywhere in
B(0, R). Therefore, the expression (1) is the weak derivative and the proof is complete.

3. We have ∫ R

0
rd−1|f(r)|pdr =

∫ R

0
rd−1+p γ < ∞ ⇐⇒ γ > −d

p
. (2)

Therefore, u ∈ Lp(B(0, R)) if and only if γ > −d

p
. Likewise, since f ′(r) = γ rγ−1, we have

u ∈ W 1,p(B(0, R)) if and only if γ > 1 − d

p
.

Exercise 3. The proof is given in the lecture notes (Lemma 2.6.2).

Exercise 4. The proof follows the same approach as in the course for the Poincaré inequality. By
contradiction, there exists {un}n∈N∗ ⊂ S is a sequence such that ∥un∥Lp(Ω) ≥ n ∥∇un∥Lp(Ω), up to
replacing un by un

∥un∥Lp(Ω)
, we can assume that

∥un∥Lp(Ω) = 1.

In particular, we have

∥∇un∥Lp(Ω) ≤ 1
n

∥un∥Lp(Ω) = 1
n

≤ 1.

Therefore, {un}n∈N is a bounded sequence in W 1,p(Ω), and since Ω is open, bounded, and Lipschitz, the
theorem of Rellich-Kondrachov shows that there exists u∞ ∈ W 1,p(Ω) such that un −→

n→∞
u∞ strongly in

Lp(Ω) and ∇un ⇀
n→∞

∇u∞ weakly in Lp(Ω). In particular, we have

∥∇u∞∥Lp(Ω) ≤ lim inf
n→∞

∥∇un∥Lp(Ω) = 0.

Therefore we have ∇u∞ = 0, and since ∥∇un∥Lp(Ω) −→
n→∞

0, we deduce that

lim
n→∞

∥un − u∞∥W1,p(Ω) = 0.

Since S is closed, we have u∞ ∈ S. However, the strong convergence of {un}n∈N shows that

∥u∞∥Lp(Ω) = lim
n→∞

∥un∥Lp(Ω) = 1. (3)

Since ∇u∞ = 0 and u∞ ∈ S, we must have u∞ = 0, and that contradicts (3).
For example, if α > 0 and S = W 1,p(Ω)∩

{
u : L d(Ω ∩ {x : |u(x)| ≠ 0}) ≥ α

}
, then we get a Poincaré

inequality for this class of functions.
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